organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jörg Jeske, Peter G. Jones,* Andreas Martens-von Salzen and Wolf-Walther du Mont

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study T = 178 K Mean σ (C–C) = 0.010 Å R factor = 0.038 wR factor = 0.109 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Mesitylselenenyl iodide

The title compound, $C_9H_{11}ISe$, displays the following dimensions involving selenium: Se-I 2.5360 (11) Å, Se-C1 1.923 (6) Å and C-Se-I 100.2 (2)°. Short Se···I and I···I contacts link the molecules into ribbons parallel to the *b* axis.

Received 21 February 2002 Accepted 26 February 2002 Online 8 March 2002

Comment

We are interested in the structural chemistry of organoselenium derivatives. The first selenenyl iodide, 2,4,6-tri-*tert*butylphenylselenenyl iodide, was synthesized and characterized by X-ray structure analysis by du Mont *et al.* (1987). It displayed crystallographic mirror symmetry, with Se–I = 2.529 (1) Å, Se–C = 1.941 (3) Å and C–Se–I = 97.5 (1)°. A search of the Cambridge Structural Database (version of October 2001; Allen & Kennard, 1993) revealed no other neutral selenenyl iodides, although two structures described as such contain very short intramolecular Se···N contacts of 2.242 (5) and 2.074 (6) Å that we would prefer to describe as genuine bonds, thus making the selenium three-coordinate (Panda *et al.*, 1993; Mugesh *et al.*, 1999).

We present here the structure of mesitylselenenyl iodide, (I), which we have previously described briefly in a review of selenium–iodine contacts (du Mont *et al.*, 2001). The molecule, which has no crystallographically imposed symmetry, is shown in Fig. 1. The geometry at selenium is essentially the same as in the structure of du Mont *et al.* (1987), with Se–I = 2.5360 (11) Å, Se–C1 = 1.923 (6) Å and C–Se–I 100.2 (2)°. The Se–I bond is not symmetrically disposed with respect to the ring; the relevant torsion angles are -99.3 (5) and 84.4 (5)°.

The molecular packing (Fig. 2) involves the following short contacts: $I \cdots I^{ii}$ and $I \cdots I^{iii}$ 3.840 (1) Å, and $Se \cdots I^{iv}$ 3.839 (2) Å (symmetry codes: see Table 1). The overall effect is to form a ribbon parallel to the *b* axis. Appreciably shorter $Se \cdots I$ contacts were observed in the 2:1 adduct between di(2,4,6-

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecule of the title compound in the crystal. Ellipsoids are drawn at 50% probability levels. H-atom radii are arbitrary. Only one orientation of the disordered methyl group at C8 is shown.

triisopropylphenyl) diselenide and molecular iodine [3.483 (1) Å; du Mont *et al.*, 1990]. The selenenyl iodide structure of du Mont *et al.* (1987) involves no such contacts (no Se \cdots I < 5.7 Å).

Experimental

Dimesityl diselenide was allowed to react with the equivalent amount of elemental iodine in dichloromethane to form the title compound. Single crystals were obtained by slow evaporation of the solution.

Crystal data

C₉H₁₁ISe $M_r = 325.04$ Monoclinic, $P2_1/c$ a = 13.964 (5) Å b = 4.606 (2) Å c = 16.214 (6) Å $\beta = 99.87$ (3)° V = 1027.5 (7) Å³ Z = 4Data collection

Nicolet P3 diffractometer ω scans Absorption correction: ψ scan (XEMP; Siemens 1994) $T_{\min} = 0.590, T_{\max} = 0.932$ 5385 measured reflections 1811 independent reflections 1442 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.109$ S = 1.191811 reflections 103 parameters H-atom parameters constrained D_x = 2.101 Mg m⁻³ Mo Kα radiation Cell parameters from 50 reflections $\theta = 10-11.5^{\circ}$ $\mu = 6.60 \text{ mm}^{-1}$ T = 178 (2) K Needle, dark red 0.60 × 0.20 × 0.05 mm

$$\begin{split} R_{\rm int} &= 0.069 \\ \theta_{\rm max} &= 25.1^{\circ} \\ h &= -16 \rightarrow 16 \\ k &= -5 \rightarrow 3 \\ l &= -19 \rightarrow 19 \\ 3 \text{ standard reflections} \\ \text{every } 147 \text{ reflections} \\ \text{intensity decay: none} \end{split}$$

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0519P)^2 \\ &+ 0.8646P] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}{}^{-3} \\ \Delta\rho_{\rm min} = -1.32 \ {\rm e} \ {\rm \AA}{}^{-3} \end{split}$$

Figure 2

Packing diagram of the title compound. $I \cdots I$ and $Se \cdots I$ contacts are indicated by broken lines. H atoms have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °).

I-Se	2.5360 (11)	$I{\cdot}\cdot{\cdot}I^{iii}$	3.8398 (13)
$I \cdot \cdot \cdot Se^i$	3.8393 (15)	Se-C1	1.923 (6)
$\mathbf{I} \cdot \cdot \cdot \mathbf{I}^{\mathrm{ii}}$	3.8398 (13)	$Se \cdots I^{iv}$	3.8393 (15)
Se-I···Se ⁱ	90.13 (4)	$I^{ii}\!\cdots\!I\!\cdots\!I^{iii}$	73.71 (3)
$Se - I \cdot \cdot \cdot I^{ii}$	169.63 (3)	C1-Se-I	100.21 (18)
$Se^{i} \cdots I \cdots I^{ii}$	86.00 (3)	$C1 - Se \cdots I^{iv}$	163.54 (19)
Se-I···I ⁱⁱⁱ	108.72 (4)	$I - Se \cdots I^{iv}$	90.13 (4)
Se ⁱ ···I···I ⁱⁱⁱ	158.68 (2)		
Symmetry codes:	(i) $x, y = 1, z$; (ii) -	$-x, y - \frac{1}{2}, \frac{1}{2} - z;$ (iii)	$-x_{1}\frac{1}{2}+y_{2}\frac{1}{2}-7$; (iv)

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) x, 1 + y, z.

H atoms at C7 and C9 were included using rigid methyl groups, and at C8 a rigid, ideally disordered methyl group with components mutually rotated by 60°; starting positions were taken from difference syntheses and then allowed to rotate but not tip. Other H atoms were included, using a riding model, starting from calculated positions. The maximum features of residual electron density are *ca* 1 Å from the Se and I atoms and can probably be ascribed to residual absorption errors.

Data collection: *P3 Software* (Nicolet, 1987); cell refinement: *P3 Software*; data reduction: *XDISK* (Nicolet, 1987); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31–37.
Mont, W.-W. du, Kubiniok, S., Peters, K. & von Schnering, H. G. (1987).
Angew. Chem. Int. Ed. Engl. 26, 780–781.

- Mont, W.-W. du, Martens, A., Pohl, S. & Saak, W. (1990). Inorg. Chem. 29, 4847–4848.
- Mont, W.-W. du, Martens-von Salzen, A., Ruthe, F., Seppälä, E., Mugesh, G., Devillanova, F. A., Lippolis, V. & Kuhn, N. (2001). J. Organomet. Chem. 623, 14–28.
- Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). *Tetrahedron Asymmetry*, **10**, 237–242.
- Nicolet (1987). P3 Software. Nicolet Analytical X-ray Instruments, Madison, Wisconsin, USA.
- Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1993). Organometallics, 18, 1986–1993.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XEMP and XP (Version 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.